The cosine rule is shown below:
![c^2=a^2+b^2-2ab\cos C](https://img.qammunity.org/2023/formulas/mathematics/high-school/7xuakf37j2toz2151r22q5nwlfcp4icl35.png)
The small letters are the side lengths and capital letters are the angles.
From the triangle shown, we can write:
![\begin{gathered} c^2=a^2+b^2-2ab\cos C \\ 2^2=4^2+5^2-2(4)(5)\cos C \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wfzi85sa4a0e0xr4tpypmpsg7dirhgv5wk.png)
We can simplify and solve for the angle C. The steps are shown below:
![\begin{gathered} 2^2=4^2+5^2-2(4)(5)\cos C \\ 4=16+25-40\cos C \\ 4=41-40\cos C \\ 40\cos C=41-4 \\ 40\cos C=37 \\ \cos C=(37)/(40) \\ C=\cos ^(-1)((37)/(40)) \\ C=22.33 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x2pe1bq0eme0ladwowvfst4aus5otfu4y5.png)
Now, we can find the value of "2ab cos(C)". Shown below:
![\begin{gathered} 2ab\cos C \\ =2(4)(5)\cos (22.33) \\ =40\cos (22.33) \\ =40*0.925 \\ =37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7zinv4sfpwtmzhnw54e4co0un8bqtao0k2.png)
Thus, the answer is 37.
Correct Answer
A