To obtain the value of x, the following steps are necessary:
Step 1: Since both triangles CDE and FGE are similar, the following ratio is valid:
![(EF)/(CE)=(EG)/(DE)](https://img.qammunity.org/2023/formulas/mathematics/college/k3ugqz2c5j1ibn8753tsbal948k04zzn49.png)
Step 2: Substitute the value of the lengths of the sides into the ratio as follows:
![\begin{gathered} EF=x \\ CE=27 \\ DE=25 \\ EG=40 \\ \text{Thus:} \\ (EF)/(CE)=(EG)/(DE) \\ \Rightarrow(x)/(27)=(40)/(25) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9mw8xs5x9vh9a8aacn8telsia4cv46lv86.png)
Step 3: Solve the resulting equation for x, as follows:
![\begin{gathered} (x)/(27)=(40)/(25) \\ \Rightarrow x=(40)/(25)*27=(1080)/(25)=43.2 \\ \Rightarrow x=43.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y2je8qtlrpypyllhgkueb9fabtnbtwjict.png)
Therefore, the value of x is 43.2 (Option B)