y = -21/2 x + 5 (option C)
Step-by-step explanation:
The points: (-4, 47) and (2, -16)
Using the slope formula:
![m\text{ = }(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sukh4lu5s7fgiz5v423o6usjd9gul4kfrj.png)
![\begin{gathered} x_1=-4,y_1=47,x_2=2,y_2\text{ = -1}6 \\ \text{slope = m =}(-16-47)/(2-(-4)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1jzhub6bdg0mf3srmky0tbkvj3kbpt2lej.png)
![\begin{gathered} \text{slope =}(-63)/(2+4)=-(63)/(6) \\ \text{slope = -21/2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nwhir4ptzvnll7vqiqzl9dh54hml6klo5k.png)
Equation of line in slope intercept form:
y = mx + b
b =y - intercept. To get b, we would use any of the given point and the slope
using (-4, 47) = (x, y)
47 = -21/2 (-4) + b
47 = 84/2 + b
47 = 42 + b
b = 47 - 42
b = 5
The equation in slope intercept form becomes:
y = -21/2 x + 5 (option C)