214k views
1 vote
Find an equation of the tangent line to the graph of the function at the given point.y=3arcsinx, (1/2,pi/2)

Find an equation of the tangent line to the graph of the function at the given point-example-1
User Jens Munk
by
3.1k points

1 Answer

1 vote

Given:


y=3arcsin(x)

Let's find the equation of the tangent line over the interval:


((1)/(2),(\pi)/(2))

First find the derivative of the equation:


y^(\prime)=(3)/(√(1-x^2))

Now evaluate the derivative when x = 1/2:


\begin{gathered} y^(\prime)=\frac{3}{\sqrt{1-((1)/(2))^2}} \\ \\ y^(\prime)=\frac{3}{\sqrt{1-(1)/(4)}} \\ \\ y^(\prime)=\frac{3}{\sqrt{(3)/(4)}} \\ \\ \end{gathered}

Solving further:


\begin{gathered} y^(\prime)=(3)/((√(3))/(√(4))) \\ \\ y^(\prime)=(3√(4))/(√(3)) \\ \\ y^(\prime)=(3*2)/(√(3)) \\ \\ y^(\prime)=(6)/(√(3)) \\ \\ y=(6)/(√(3))*(√(3))/(√(3)) \\ \\ y=(6√(3))/(3) \\ \\ y=2√(3) \end{gathered}

Now, the slope of the tangent line is 2√3.

Input the value for the slope, then put (1/2, π/2) for x1 and y1 in point-slope form:


\begin{gathered} y-y1=m(x-x1) \\ \\ y-(\pi)/(2)=2√(3)(x-(1)/(2)) \\ \\ y-(\pi)/(2)=2√(3)x-2√(3)*(1)/(2) \\ \\ y-(\pi)/(2)=2√(3)x-√(3) \end{gathered}

Now add π/2 to both sides:


\begin{gathered} y-(\pi)/(2)+(\pi)/(2)=2√(3)x-√(3)+(\pi)/(2) \\ \\ y=2√(3)x-(2√(3)-\pi)/(2) \end{gathered}

Therefore, the equation of the tangent line is:


y=2√(3)x-(2√(3)-\pi)/(2)

ANSWER:


y=2√(3)x-(2√(3)-\pi)/(2)

User Hands
by
2.7k points