Given:
![y=3arcsin(x)](https://img.qammunity.org/2023/formulas/mathematics/college/36ih1atgj5otwkjyr8my4jyzrryat4x59l.png)
Let's find the equation of the tangent line over the interval:
![((1)/(2),(\pi)/(2))](https://img.qammunity.org/2023/formulas/mathematics/college/ira1vycw35rn01g9916tm7dlweoiqspiqo.png)
First find the derivative of the equation:
![y^(\prime)=(3)/(√(1-x^2))](https://img.qammunity.org/2023/formulas/mathematics/college/7u38t05ah4q3p3kw4nhupjyac4cduvohse.png)
Now evaluate the derivative when x = 1/2:
![\begin{gathered} y^(\prime)=\frac{3}{\sqrt{1-((1)/(2))^2}} \\ \\ y^(\prime)=\frac{3}{\sqrt{1-(1)/(4)}} \\ \\ y^(\prime)=\frac{3}{\sqrt{(3)/(4)}} \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ibepvu67oc22etukrcwms74zofvb3b97k.png)
Solving further:
![\begin{gathered} y^(\prime)=(3)/((√(3))/(√(4))) \\ \\ y^(\prime)=(3√(4))/(√(3)) \\ \\ y^(\prime)=(3*2)/(√(3)) \\ \\ y^(\prime)=(6)/(√(3)) \\ \\ y=(6)/(√(3))*(√(3))/(√(3)) \\ \\ y=(6√(3))/(3) \\ \\ y=2√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4agmbleckpjye921ts910ckdnyuw8ywgjm.png)
Now, the slope of the tangent line is 2√3.
Input the value for the slope, then put (1/2, π/2) for x1 and y1 in point-slope form:
![\begin{gathered} y-y1=m(x-x1) \\ \\ y-(\pi)/(2)=2√(3)(x-(1)/(2)) \\ \\ y-(\pi)/(2)=2√(3)x-2√(3)*(1)/(2) \\ \\ y-(\pi)/(2)=2√(3)x-√(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vd5rug5y6n7q56m1y4e5iy7wt759cmsyb6.png)
Now add π/2 to both sides:
![\begin{gathered} y-(\pi)/(2)+(\pi)/(2)=2√(3)x-√(3)+(\pi)/(2) \\ \\ y=2√(3)x-(2√(3)-\pi)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4fg94vd9l96490se3aty7p5oxoox1hw4xy.png)
Therefore, the equation of the tangent line is:
![y=2√(3)x-(2√(3)-\pi)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/rt5vz2flh52vicg75o7lzuny2nd9lhs8y0.png)
ANSWER:
![y=2√(3)x-(2√(3)-\pi)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/rt5vz2flh52vicg75o7lzuny2nd9lhs8y0.png)