Solution:
In the toss of a coin, the possible outcome is either head (H) or tail (T).
![\begin{gathered} \text{Number of heads (H) = 1} \\ \text{Number of tails (T) = 1} \\ \text{Total outcome = 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l0d39pfuu02vho926jbbqyyshejn5pbfbx.png)
![\begin{gathered} \text{Probability}=\frac{\text{number of required outcome}}{\text{total possible outcome}} \\ \\ \text{Probability of head, P(H) =}(1)/(2) \\ \text{Probability of tail, P(T) =}(1)/(2) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ppnyg8ynccpri4vpo0kbt6wj5gnd0m1b5a.png)
To get between 3 and 6 heads, inclusive, the following outcomes holds;
![\begin{gathered} 3\text{ heads, 7 tails = 3H, 7T}=\text{HHHTTTTTTT} \\ 4\text{ heads, 6 tails = 4H, 6T}=\text{HHHHTTTTTT} \\ 5\text{ heads, 5 tails = 5H, 5T}=\text{HHHHHTTTTT} \\ 6\text{ heads, 4 tails = 6H, 4T}=\text{HHHHHHTTTT} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lkze3n926pg7hakzrbs3eqg698avx9oly2.png)
Probability of 3H, 7T using binomial distribution for the arrangement of the outcomes
![\begin{gathered} P(\text{HHHTTTTTTT)}=^(10)C_3((1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)) \\ P(\text{HHHTTTTTTT)=120}*((1)/(2))^(10) \\ P(\text{HHHTTTTTTT)}=120*(1)/(1024) \\ P(\text{HHHTTTTTTT)}=(120)/(1024) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lv8in91vr7zr7502znemgkxugfdbbk8fhv.png)
Probability of 4H, 6T using binomial distribution for the arrangement of the outcomes
![\begin{gathered} P(\text{HHHHTTTTTT)}=^(10)C_4((1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)) \\ P(\text{HHHHTTTTTT)=210}*((1)/(2))^(10) \\ P(\text{HHHHTTTTTT)}=210*(1)/(1024) \\ P(\text{HHHHTTTTTT)}=(210)/(1024) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qoxsqn79bcnfq27wu2b8zwryiyq9mcfmkx.png)
Probability of 5H, 5T using binomial distribution for the arrangement of the outcomes
![\begin{gathered} P(\text{HHHHHTTTTT)}=^(10)C_5((1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)) \\ P(\text{HHHHHTTTTT)=252}*((1)/(2))^(10) \\ P(\text{HHHHHTTTTT)}=252*(1)/(1024) \\ P(\text{HHHHHTTTTT)}=(252)/(1024) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nbwfl2g2utiemp36k7u2dii9ju6us819uy.png)
Probability of 6H, 4T using binomial distribution for the arrangement of the outcomes
![\begin{gathered} P(\text{HHHHHTTTTT)}=^(10)C_6((1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)*(1)/(2)) \\ P(\text{HHHHHTTTTT)=210}*((1)/(2))^(10) \\ P(\text{HHHHHTTTTT)}=210*(1)/(1024) \\ P(\text{HHHHHTTTTT)}=(210)/(1024) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/blvi9oiamq9vub698xikh44rfkfmuyrjzm.png)
The probability of getting between 3 and 6 heads inclusive in 10 tosses of a coin will be the sum of the probabilities gotten.
![\begin{gathered} P(3\text{ and 6 heads inclusive)=}(120)/(1024)+(210)/(1024)+(252)/(1024)+(210)/(1024) \\ =(792)/(1024) \\ =(99)/(128) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/35jq72t7g3g98qw9gxg8ogtmwrck1j5x0l.png)
The probability of getting between 3 and 6 heads inclusive in 10 tosses of a coin is
![(99)/(128)](https://img.qammunity.org/2023/formulas/mathematics/college/3jadjbcumtbsznkug10lco0c6yk36yk5o6.png)