Solution:
Given the table below:
To determine the function that models the total cost c, to rent a truck for any number of miles m, we use the line equation passing through two points.
The equation of a line that passes through two points is expressed as
![\begin{gathered} y-y_1=((y_2-y_1)/(x_2-x_1))(x-x_1)\text{ ---- equation 1} \\ where \\ (x_1,y_1)\text{ and \lparen x}_2,y_2)\text{ are the points through which the line passes.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ay4xo9upfzu340rmcjwavy31kj05wpwd76.png)
In this case,
![\begin{gathered} y\Rightarrow c \\ x\Rightarrow m \\ this\text{ gives} \\ c-c_1=((c_2-c_1)/(m_2-m_1))(m-m_1)\text{ ------ equation 2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/okscyeffdzhe32ktqf1yg5z1rmg6uttabj.png)
From the table of values,
![\begin{gathered} c_1=200 \\ m_1=100 \\ c_2=350 \\ m_2=200 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hze5km7g13ekf0yl8ktwjsofszmqtxg0rc.png)
Substituting these values into equation 2, we have
![\begin{gathered} c-200=((350-200)/(200-100))(m-100) \\ \Rightarrow c-200=(150)/(100)(m-100) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zi1qpucza0zfa19wskithd4oak78o7n2m2.png)
Multiply through by 100,
![\begin{gathered} 100(c-200)=100((150)/(100)(m-100)) \\ \Rightarrow100(c-200)=150(m-100) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oy1zqsqfliqtwgv925dv6iaz5vsp01ztgo.png)
Open parentheses,
![100c-20000=150m-15000](https://img.qammunity.org/2023/formulas/mathematics/college/wc1z7myfg058ko3xbtdpiyaeudsnsuwgwr.png)
Add 20000 to both sides of the equation,
![\begin{gathered} 100c-20000+20000=150m-15000+20000 \\ \Rightarrow100c=150m+5000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jzgo3msjxgchflulncdnmu2miorthx9oc2.png)
Divide both sides by the coefficient of c.
The coefficient of c is 100.
Thus,
![\begin{gathered} (100c)/(100)=(150m+5000)/(100) \\ c=(150)/(100)m+(5000)/(100) \\ \Rightarrow c=1.5m+50 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yocacwcvj1qmb6jfnkexsxsag8ixr2zeiz.png)
Hence, the function that models the total cost, c, to rent a large truck for any number of miles m is expressed as
![c=1.5m+50](https://img.qammunity.org/2023/formulas/mathematics/college/e6vkilkdflqy5umg7zru31ia4d5al4a0an.png)