123k views
3 votes
Given cos 0 = - 3/5 and cot A < 0, find the tan 0

Given cos 0 = - 3/5 and cot A < 0, find the tan 0-example-1
User Dgorur
by
3.3k points

1 Answer

6 votes

Solution

Given that cos θ= 3/5 and cot x < 0, then tanθ = ?

Using trigonometric function and angle


cos=(adj)/(hyp)

USING PYTHAGORAS therorem


\begin{gathered} adjacent=-3 \\ opposite=x \\ hypotenuse=5 \end{gathered}


\begin{gathered} hYP^2=OPP^2+ADJ^2 \\ 5^2=x^2+(-3)^2 \\ 25=x^2+9 \\ x^2=25-9 \\ x^2=16 \\ x=√(16) \\ x=4 \end{gathered}

Tanθ = opposite/adjacent


tan\theta=(4)/(-3)=-(4)/(3)

Given cos 0 = - 3/5 and cot A < 0, find the tan 0-example-1
User Miradulo
by
3.9k points