Answer:
The speed of the jet is 175 mph
Explanation:
Let x be the speed of the jet.
The speed of the wind is 18 mph.
If the jet can fly 942 miles against the headwind:
![x=(942)/(t)+18\text{ \lparen1\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/39mbq65ie25sxjw6gwmksvst5iujdt3326.png)
If it can fly 1158 nukes with an 18 mph tailwind, therefore:
![x=(1158)/(t)-18\text{ \lparen2\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/389oalxiu03euzwnt8f58e4clqbvi81r1u.png)
Equalize, and solve for t using equations (1) and (2).
![\begin{gathered} (942)/(t)+18=(1158)/(t)-18 \\ (942)/(t)-(1158)/(t)=-18-18 \\ -(216)/(t)=-36 \\ t=(-216)/(-36) \\ t=6\text{ hours} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9kv60dqswh0n89tv6srjimh73oo15vpsxl.png)
Now, knowing the time substitute it into the equation and solve for the speed of the jet.
![\begin{gathered} x=(1158)/(t)-18 \\ x=175\text{ mph} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w23l64gw5w99wvsqb8hvj41063mcwj9bit.png)
The speed of the jet is 175 mph.