222k views
2 votes
Triangle ABC, with vertices A(2,-8), B(5,-9), and C(4,-6), is drawn on the coordinate grid below. y 2 1 X -2 -1 1 N 4 5.6 7 8 9 10 -1 -2 -3 -4

Triangle ABC, with vertices A(2,-8), B(5,-9), and C(4,-6), is drawn on the coordinate-example-1
User Foamroll
by
5.0k points

1 Answer

5 votes

First, we have to calculate the measures of the sides of the triangle.

Apply the distance formula:


d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}

Replace with the coordinate points given:

A= (2,-8)

B= (5,-9)

C= (4,-6)

Side AC


d=\sqrt[]{(4-2)^2+(-6-(-8))^2}=\sqrt[]{2^2+2^2}=\sqrt[]{8}

Side CB


d=\sqrt[]{(5-4)^2+(-9-(-6))^2}=\sqrt[]{1+9}=\sqrt[]{10}

Side AB


d=\sqrt[]{(5-2)^2+(-9-(-8))}=\sqrt[]{9-1}=\sqrt[]{10}

Apply Heron's formula:


A\text{ =}\sqrt[]{s(s-a)(s-b)(s-c)}


s=(a+b+c)/(2)

a, b, c are the distances ,CB , AC and AB


s=\frac{\sqrt[]{10}+\sqrt[]{10}+\sqrt[]{8}}{2}=\frac{2\sqrt[]{10}+\sqrt[]{8}}{2}=4.58
undefined

User Habizzle
by
5.0k points