Before we start we need to remember that co-interior angles are supplementary, that is, they add up to 180°.
First diagram.
The angles shown are co-interior angles, then we have:
![\begin{gathered} x+96+x+96=180 \\ 2x+192=180 \\ 2x=180-192 \\ 2x=-12 \\ x=-(12)/(2) \\ x=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwqumphrkiber6j6mivmew4xezj636stbb.png)
Once we have the value of x we plug it in the expression of the angle we want to know to find it:
![-9+96=90](https://img.qammunity.org/2023/formulas/mathematics/college/z90ikqty1fqsl4tqz1o3lz68q912w26jdd.png)
Therefore, the angle is 90°.
Second diagram.
Once again the angles shown are co-interior then we have:
![\begin{gathered} x+109+x+89=180 \\ 2x+198=180 \\ 2x=180-198 \\ 2x=-18 \\ x=-(18)/(2) \\ x=-9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pt35botq8tsxxl35w0q9v0sjkpp8cgmf52.png)
Plugging the value of x in the expression for the bolded diagram we have:
![-9+89=80](https://img.qammunity.org/2023/formulas/mathematics/college/g0ue4t6p2x16s8nfqdqukgvwit3st9375v.png)
Therefore, the angle in the second diagram is 80°