179k views
2 votes
I don’t know the answer I can’t find any pattern

I don’t know the answer I can’t find any pattern-example-1

1 Answer

2 votes

The given sequence is:


9,-18,27,-36,\ldots

It is required to find the nth term of the sequence as suggested by the pattern.

Rewrite the terms of the sequence as follows:


\begin{gathered} 9*1,9*-2,9*3,9*-4,\ldots \\ \text{ Rewrite as follows to denote the alternating terms:} \\ 9*(-1)^2*1,9*(-1)^3*2,9*(-1)^4*3,9*(-1)^5*4,\operatorname{\ldots} \end{gathered}

The powers can be written as:


9*(-1)^(1+1)*1,9*(-1)^(2+1)*2,9*(-1)^((3+1))*3,9*(-1)^((4+1))*4,\ldots

From the pattern above, it follows that the nth term of the sequence is:


\begin{gathered} \lbrace a_n\rbrace=\lbrace9*(-1)^(n+1)* n\rbrace \\ \Rightarrow\lbrace a_n\rbrace=\lbrace(-1)^((n+1))\cdot9n\rbrace \end{gathered}

The nth term of the sequence is shown above.

User Kaustuv
by
3.5k points