179k views
2 votes
I don’t know the answer I can’t find any pattern

I don’t know the answer I can’t find any pattern-example-1

1 Answer

2 votes

The given sequence is:


9,-18,27,-36,\ldots

It is required to find the nth term of the sequence as suggested by the pattern.

Rewrite the terms of the sequence as follows:


\begin{gathered} 9*1,9*-2,9*3,9*-4,\ldots \\ \text{ Rewrite as follows to denote the alternating terms:} \\ 9*(-1)^2*1,9*(-1)^3*2,9*(-1)^4*3,9*(-1)^5*4,\operatorname{\ldots} \end{gathered}

The powers can be written as:


9*(-1)^(1+1)*1,9*(-1)^(2+1)*2,9*(-1)^((3+1))*3,9*(-1)^((4+1))*4,\ldots

From the pattern above, it follows that the nth term of the sequence is:


\begin{gathered} \lbrace a_n\rbrace=\lbrace9*(-1)^(n+1)* n\rbrace \\ \Rightarrow\lbrace a_n\rbrace=\lbrace(-1)^((n+1))\cdot9n\rbrace \end{gathered}

The nth term of the sequence is shown above.

User Kaustuv
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories