123k views
3 votes
Find the particular solution of the differential equation that satisfies the initial conditions.

Find the particular solution of the differential equation that satisfies the initial-example-1
User Ahmar Ali
by
7.9k points

1 Answer

0 votes


\begin{gathered} f^(\prime\prime)(x)=-(4)/((x-1)^2)-2 \\ u=x-1 \\ f^(\prime)(x)=\int_(x>1)(-(4)/((x-1)^2)-2)\cdot dx=-4\int_(u>0)u^(-2)\cdot du-2\int_(x>1)dx+c \\ f^(\prime)(x)=(4)/(u)-2x \\ f^(\prime)(x)=(4)/(x-1)-2x+c \\ f^(\prime)(x)=(-2x^2+2x+4)/(x-1)+c \\ f^(\prime)(2)=0 \\ c=-((-2\cdot2^2+2\cdot2+4))/(2-1) \\ c=0 \\ \begin{equation*} f^(\prime)(x)=(-2x^2+2x+4)/(x-1) \end{equation*} \\ f(x)=\int_(x>1)(-2x^(2)+2x+4)/(x-1)\cdot dx \\ f(x)=-2\int_(x>1)(x^2)/(x-1)dx+2\int_(x>1)(x)/(x-1)dx+4\int(1)/(x-1)dx \\ f(x)=-(x^2+2x+2\ln|x-1|-3)+2(x-1+\ln|x-1|)+2\ln|x-1|+c \\ f(x)=-x^2+2\ln|x-1|+1+c \\ f(2)=3 \\ -2^2+2\ln|2-1|+1+c=3 \\ c=6 \\ \therefore f(x)=-x^2+2\ln|x-1|+7 \end{gathered}
User Artgb
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories