81.0k views
5 votes
14. Pick the corner point below that maximizes the following objective function: p=22x+14y (6,5)(0,0)(0,12)(15,0)(11,13)

1 Answer

4 votes

Okay, here we have this:

Considering the provided function, we are going to replace the coordinate pairs one by one in the function, to observe which of the pairs maximizes the function, so we obtain the following:

(6, 5):

p=22x+14y

p=22(6)+14(5)

p=132+70

p=202

(0,0):

p=22x+14y

p=22(0)+14(0)

p=0+0

p=0

(0, 12):

p=22x+14y

p=22(0)+14(12)

p=0+168

p=168

(15, 0):

p=22x+14y

p=22(15)+14(0)

p=330+0

p=330

(11, 13):

p=22x+14y

p=22(11)+14(13)

p=242+182

p=424

Finally we obtain that the corner point that maximizes the function p=22x+14y is the last option (11, 13).

User Dagelf
by
3.2k points