We have to calculate the area of a triangle where we only know the lengths of the sides.
We can apply the Heron's formula:
![A=\sqrt[]{p(p-q)(p-r)(p-s)}](https://img.qammunity.org/2023/formulas/mathematics/college/bs5x5klehnqxkvzb5guc0az0smiuknie54.png)
where q, r and s are the side's lengths and p is half the perimeter:

Then, we can calculate the area as:
![\begin{gathered} A=\sqrt[]{1060\cdot(1060-950)\cdot(1060-290)\cdot(1060-880)} \\ A=\sqrt[]{1060\cdot110\cdot770\cdot180} \\ A=\sqrt[]{16160760000} \\ A\approx127124.98\operatorname{cm} \\ A\approx127125\operatorname{cm} \end{gathered}]()
Answer: the area of the triangle is 127,125 cm^2.