We are asked to solve the inequality
![10-4|1-8n|\leq6](https://img.qammunity.org/2023/formulas/mathematics/college/kt44dgvkzwoowtkbcpm28de7on4i84xhep.png)
which can be decomposed into two separate inequalities
![10-4(1-8n)\leq6](https://img.qammunity.org/2023/formulas/mathematics/college/cdlfgnqxlwciuzzo9kcgi7sa9aihx6ul4h.png)
and
![10+4(1-8n)\leq6](https://img.qammunity.org/2023/formulas/mathematics/college/vf8snhromy9u9manh9yr90c3h02ubxgu0n.png)
Let us solve the first inequality. by first subtracting 10 from both sides. Doing this gets us
![-4\mleft(1-8n\mright)\le-4](https://img.qammunity.org/2023/formulas/mathematics/college/s2wf0v16ic7o7gndzokrhbdnee7yj1ctlb.png)
dividing both sides by -4 reverses the sign of the inequality; therefore, we get
![1-8n\ge1](https://img.qammunity.org/2023/formulas/mathematics/college/zvh143mcyo3fm4fkuax7hw56sn7oi3ghx8.png)
subtracting 1 from both sides gets us
![-8n>0](https://img.qammunity.org/2023/formulas/mathematics/college/9akrh3mb23w4qyhmedfbjses3qt6v873li.png)
![\textcolor{#FF7968}{\therefore n\leq0}](https://img.qammunity.org/2023/formulas/mathematics/college/c0756ww2mmw9grw017yc0xq33bv6ndz4ml.png)
A similar process for the inequality 10 + 4(1-8n) ≤ 6 gives us the solution
![\textcolor{#FF7968}{n\ge(1)/(4)}](https://img.qammunity.org/2023/formulas/mathematics/college/tkjnc4neip61rv7stajbjvpa3ro058ntns.png)