Given r = -3 + 4 cos 0
To find the when r is maximum
We will find:
![(dr)/(d\theta)](https://img.qammunity.org/2023/formulas/mathematics/college/qt3oq21a454ccqnyky65wonhmr6goljntj.png)
![\begin{gathered} (dr)/(d\theta)=0+4\cdot(-\sin \theta)=0 \\ -4\sin \theta=0 \\ \sin \theta=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mxfrablau1ule72zjfkltsyl81wiwebwi9.png)
so, Theta = 0 or pi
So, when theta = 0
r = -3 + 4 cos 0 = -3 + 4 = 1
when theta = pi
r = -3 + 4 cos pi = -3 - 4 = -7
As r is the distance from the pole
So, the maximum distance occur at theta = pi
So, the answer is option d. π