108k views
1 vote
find the number of years required to reach the intended future value at the given rate: p=$7000, FV=$10000, r=4.3%

1 Answer

2 votes

Given :

p =$7000,

A = $10000,

r = 4.3% = 0.043

Assume a simple interest


\begin{gathered} A=P+I \\ I=P\cdot r\cdot t \\ A=P+P\cdot r\cdot t \\ A=P\cdot(1+r\cdot t) \end{gathered}

So,


\begin{gathered} A=P\cdot(1+r\cdot t) \\ 10000=7000\cdot(1+0.043\cdot t) \end{gathered}

Solve for t :


\begin{gathered} 10000=7000\cdot(1+0.043\cdot t) \\ 1+0.043\cdot t=(10000)/(7000)=(10)/(7) \\ 0.043\cdot t=(10)/(7)-1 \\ \\ 0.043t=0.42857 \\ \\ t=(0.42857)/(0.043)\approx9.97 \end{gathered}

So, rounding to the nearest year

So, time = 10 years

User Xavier Falempin
by
6.2k points