Step-by-step explanation
We are given the following information from the table in the image:
![\begin{gathered} Flounder=278 \\ Red\text{ }drum=359 \\ Black\text{ }drum=151 \\ Blue\text{ }fish=305 \\ Sea\text{ }Trout=166 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mot33qegrlj3hmu0px4fcvqjtnkwp60m7e.png)
We are required to determine the probability that the next fish caught is a drum or bluefish.
We can determine the probability with the following details:
![\begin{gathered} Total\text{ }fish=278+359+151+305+166=1259 \\ Blue\text{ }fish=305 \\ Drum=359+151=510 \\ Probaility=(n(E))/(n(S))=\frac{Number\text{ }of\text{ }required\text{ }outcome}{Number\text{ }of\text{ }possible\text{ }or\text{ }total\text{ }outcome} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7y07y37shw1wlrow3yon768silxlb0tzyk.png)
Therefore, the probability that the next fish caught is a drum or bluefish is:
![\begin{gathered} Prob.=P(Drum)+P(Bluefish) \\ Prob.=(510)/(1259)+(305)/(1259) \\ \\ Prob.=(815)/(1259)\text{ }or\text{ }0.6473 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iu30s57j43slaq861soljturo16q6twrxv.png)
Hence, the answer is:
![P(D\text{ }or\text{ }B)=(815)/(1259)\text{ }or\text{ }0.6473](https://img.qammunity.org/2023/formulas/mathematics/college/3iyeg003wlvfkmmv71lw9camleq5sjdu56.png)