The margin of error formula is given by
![T_c*\frac{s}{\sqrt[]{n}}](https://img.qammunity.org/2023/formulas/mathematics/college/4cuzgxg86dxdc67ui4e6npkzoq4zof0pie.png)
where T_c is the critical T-value for n=21 degrees of freedom and s is the standard deviation. Then, for n=21 and 98% confidence level, we have that
![T_c=2.5176](https://img.qammunity.org/2023/formulas/mathematics/college/zxubigm2hhc9jf1d97l0tihfhaz7phf40v.png)
Therefore, by substituting these values into the margin of error formula, we have
![T_c*\frac{s}{\sqrt[]{n}}=2.5176*\frac{6}{\sqrt[]{21}}](https://img.qammunity.org/2023/formulas/mathematics/college/cdqic8k8wv0uvrtiv242ar7zg28esu42na.png)
which gives
![T_c*\frac{s}{\sqrt[]{n}}=3.2963](https://img.qammunity.org/2023/formulas/mathematics/college/dlyxq4em5vabofd6i0t4ife75dmtibbozc.png)
Then, the margin of error is 3.2963 and the confidence interval for the given mean is:
![43.7037\le\bar{x}\le50.2963](https://img.qammunity.org/2023/formulas/mathematics/college/qfkvhvo5nsttu0j6d1r5gso77s24sndml6.png)