The specific heat capacity of a substance is the amount of energy required to raise the temperature of 1g of the substance by 1K.
![\begin{gathered} q=mc\Delta T \\ q:energy\text{ }(J)=x \\ m:mass\text{ }(g)=5.00g \\ c:specific\text{ }heat\text{ }capacity\text{ }(Jg^(-1)K^(-1)) \\ \Delta T:change\text{ }in\text{ }temperature\text{ }(K) \\ \Delta T:(final\text{ }temperature-initial\text{ }temperature) \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/high-school/dr2wnbeq48u5nt63wjv21jzaeystx9uxkn.png)
Calculating the change in temperature:
![\Delta T:(273.15K+36.5\degree C)-(273.15K+15\degree C)=21.5K](https://img.qammunity.org/2023/formulas/chemistry/high-school/jzcpvm8qt69q390cvdp4syd71ge1tdi9jz.png)
By substituting what we are given into the equation to solve for the unknow x we have;
![\begin{gathered} q=5.00g*4.18Jg^(-1)K^(-1)*21.5K \\ q=+449.35J \end{gathered}](https://img.qammunity.org/2023/formulas/chemistry/high-school/psqyg1h9au8vkyiuf5i2izvdontk4vfjci.png)
Answer: Energy needed is 449.35J