Answer:
Vertex = (1, 1)
Explanation:
Given the quadratic equation:
![y-x^2+2x=2](https://img.qammunity.org/2023/formulas/mathematics/college/zh0svviwsfihfddkrdtc4dts1k0hgi5eyj.png)
First, rewrite the equation in the standard form y=ax²+bx+c:
![\begin{gathered} y=x^2-2x+2 \\ \implies a=1,b=-2,c=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g7uzh3hixpj4wqf927ba0mu2eqq8a7pa69.png)
The value of x at the vertex is obtained using the formula for the equation of symmetry below:
![\begin{gathered} x=-(b)/(2a) \\ x=-(-2)/(2*1)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rlmp63by0r2zh08xr7micu1byn1r1n09oe.png)
Next, substitute x=1 into the quadratic function:
![\begin{gathered} y=x^2-2x+2 \\ =1^2-2(1)+2 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/txo6gylyz2n3w67w063i9vk8q55fdensff.png)
The vertex of the quadratic function is (x, y) = (1, 1).
The first option is correct.