We know that diagonals bisect each other perpendicularly, so we can draw the following picture:
Then, from the right triangle FED,
we have that
![x^2+16^2=28^2](https://img.qammunity.org/2023/formulas/mathematics/college/pnuv8f9xqtxeyt72ng6qmyygqlgo8mg8bp.png)
which gives
![x^2=784-256](https://img.qammunity.org/2023/formulas/mathematics/college/b37p5mikq62ul1dz12ej0cctn2brnzwsnb.png)
then
![\begin{gathered} x^2=528 \\ x=\sqrt[]{528} \\ x=\sqrt[]{16\cdot33} \\ x=4\sqrt[]{33} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xalkqo2fgd7q24sxd7g882y94q9rqn07ub.png)
Therefore,
![EF=x=4\sqrt[]{33}](https://img.qammunity.org/2023/formulas/mathematics/college/a7rxr6sjpidk0op1w8suenofg0fnr7acqr.png)
Since EC is twice EF, then
![EC=8\sqrt[]{33}](https://img.qammunity.org/2023/formulas/mathematics/college/m0js7gh1btejlhx6c2q0pl4iwqzruaiact.png)
Finally, we know that all sides are equal, this means that
![BC=ED=28=CD=BE](https://img.qammunity.org/2023/formulas/mathematics/college/oab3650xetciqq2ickfw0sejyk2h4kmr86.png)
In summary, the answers are:
![\begin{gathered} CD=28 \\ FD=(32)/(2)=16 \\ EF=4\sqrt[]{33} \\ EC=8\sqrt[]{33} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i0wzvklsbckdrbcjqxnmhdy3lnw55itenr.png)