The distance (d) between two points (x₁, y₁) and (x₂, y₂) is:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2023/formulas/mathematics/college/ryn3fzehb0ozllfgi4eom8sc1fxhgg6wgd.png)
To find the area of the rectangle, find the distance between the points (sides of the rectangle.
Step 01: Finding the distance between A(-3, 0) and B(3,2).
![\begin{gathered} d_(AB)=√((3-(-3))^2+(2-0)^2) \\ d_(AB)=√(6^2+2^2) \\ d_(AB)=√(36+4) \\ d_(AB)=√(40) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o42mrj9xg2a1d70efy176bsnbukcf30pkm.png)
Step 02: Finding the distance between B(3,2) and C(4, -1).
![\begin{gathered} d_(AB)=√(()^2+()^2) \\ d_(AB)=√((4-3)^2+(-1-2)^2) \\ d_(AB)=√(1^2+(-3)^2) \\ d_(AB)=√(1+9) \\ d_(AB)=√(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r07s6rsrre602rujxejstfjeux312fptax.png)
Step 03: Find the area of the rectangle.
The area (A) of the rectangle is length * width.
Then,
![\begin{gathered} A=√(40)*√(10) \\ A=√(400) \\ A=20square\text{ }units \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qn4v66dx6smcscqxbgzwmale8eqq049qi9.png)
Answer: 20 square units.