87.9k views
5 votes
Right triangle Trigonometry problemIll send a picture of the question

Right triangle Trigonometry problemIll send a picture of the question-example-1
User Medriscoll
by
7.4k points

1 Answer

7 votes

Given:

In a right triangle,

The opposite side is


8\sqrt[]{2}\text{ inches}

The angle is 45 degrees.

To find the length of the hypotenuse side:

Using the trigonometric ratio,


\begin{gathered} \sin \theta=\frac{Opp}{\text{Hyp}} \\ \sin 45^(\circ)=\frac{8\sqrt[]{2}}{Hyp} \\ \frac{1}{\sqrt[]{2}}=\frac{8\sqrt[]{2}}{Hyp} \\ \text{Hyp}=8\sqrt[]{2}*\sqrt[]{2} \\ \text{Hyp}=16\text{ inches} \end{gathered}

Hence, the length of the hypotenuse side is 16 inches.

User Kris Peeling
by
6.9k points