Given
The ratios,
A. 1 : 6 and 3 : 18
B. 2 : 14 and 3 : 42
C. 12 : 6 and 2 : 1
D. 3 : 11 and 6 : 22
To find the ratios which are not equal.
Step-by-step explanation:
It is given that,
A. 1 : 6 and 3 : 18
That implies,
![\begin{gathered} (3)/(18)=(3)/(6*3) \\ =(1)/(6) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rqnia0krs2vxnerkzfvc3ikddkb7pyi9ft.png)
Hence, the ratios 1 : 6 and 3 : 18 are equal.
B. 2 : 14 and 3 : 42
That implies,
![\begin{gathered} (2)/(14)=(2)/(2*7) \\ =(1)/(7) \\ (3)/(42)=(3)/(3*2*7) \\ =(1)/(14) \\ \Rightarrow(2)/(14)\\e(3)/(42) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ce4yineusx2loy8cuh5p483ut851cu0kjj.png)
Hence, the ratios 2 : 14 and 3 : 42 are not equal.
C. 12 : 6 and 2 : 1
That implies,
![\begin{gathered} (12)/(6)=(2*6)/(6) \\ =(2)/(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/99xjecpw99e2mfrw2bdanr61qk05kwlxp4.png)
Hence, the ratios C. 12 : 6 and 2 : 1 are equal.
D. 3 : 11 and 6 : 22
That implies,
![\begin{gathered} (6)/(22)=(2*3)/(2*11) \\ =(3)/(11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1se82a9lgkp5k0atjhpb1gr3e6c8egvwad.png)
Hence, the ratios D. 3 : 11 and 6 : 22 are equal.
Thus, the ratios B. 2 : 14 and 3 : 42 are not equal.