234k views
0 votes
2) A plane traveled 264 miles to Carson City and back. The trip there was with the wind. It took 3 hours. The trip back was into the wind. The trip back took 6 hours. What is the speed of the plane in still air? What is the speed of the wind?

1 Answer

2 votes

Given:

a.) A plane traveled 264 miles to Carson City and back.

b.) The trip there was with the wind. It took 3 hours.

c.) The trip back was into the wind. The trip back took 6 hours.

Let,

r = rate of the plane, mph.

w = rate of the wind, mph.

The distance to and from Carson City is 264 miles. The time to fly with the wind is 3 hours and the time to return against the wind is 6 hours. Using distance equals the rate multiplied by time, we can write two equations - one for with the wind and one for against the wind, as follows:

(1) (r + w)*3 = 264

(2) (r - w)*6 = 264

or

[(r + w)*3 = 264]/3

(3) r + w = 88

[(r - w)*6 = 264]/6

(4) r - w = 44

Now, let's add equations (3) and (4). We get,

(5) (r + w) + (r - w) = 88 + 44

(6) 2r = 132

2r/2 = 132/2

(7) r = 66 ; speed of the plane

Substitute r = 66 in equation (3) to get w.

r + w = 88

66 + w = 88

w = 88 - 66

(8) w = 22 ; speed of the wind

Therefore, the plane travels at 66 mph and the wind is blowing at 22 mph.

User Joe H
by
3.4k points