104k views
0 votes
Solve the equation on the interval 0<=theta<2pi2 sin^2 theta-V3 sin theta = 0

Solve the equation on the interval 0<=theta<2pi2 sin^2 theta-V3 sin theta = 0-example-1
User Jamey
by
4.9k points

1 Answer

4 votes

Given the equation


2\sin ^2\theta-√(3)\sin \theta=0

We can rewrite the given equation as:


2\sin ^{}\theta\sin ^{}\theta-√(3)\sin \theta=0

Factoring, we obtain:


\sin ^{}\theta(2\sin ^{}\theta-√(3))=0

Therefore, we can say:


\begin{gathered} \sin ^{}\theta=0\: \implies\theta=0 \\ \text{Similarly} \\ 2\sin ^{}\theta-√(3)=0 \\ \implies2\sin ^{}\theta=√(3) \\ \implies\sin ^{}\theta=(√(3))/(2) \\ \implies\theta=\sin ^(-1)(√(3))/(2) \\ \implies\theta=(\pi)/(3) \end{gathered}

Therefore, the solution set in the given interval is:


\left\lbrace 0,(\pi)/(3)\right\rbrace

User Siyuan Miao
by
5.7k points