Gavin had 20 minutes to do a three-problem quiz.
He spent 9 3/4 minutes on problem 1.
He spent 3 4/5 minutes on problem 2.
How much time did he have left for problem 3?
We need to add the time spent on problem 1 and problem 2 and then subtract the sum from the total time.
![20-(9(3)/(4)+3(4)/(5))](https://img.qammunity.org/2023/formulas/mathematics/college/dkumlrg0ftasoq3gu33c27tk2jlmmpewir.png)
Simplify the above fraction
![\begin{gathered} 20-(9(3)/(4)+3(4)/(5)) \\ 20-\lbrack(9+3)((3)/(4)+(4)/(5))\rbrack \\ 20-\lbrack(12)((5\cdot3+4\cdot4)/(20))\rbrack \\ 20-\lbrack(12)((15+16)/(20))\rbrack \\ 20-\lbrack(12)((31)/(20))\rbrack \\ 20-12(31)/(20) \\ 20-\frac{12\cdot20+31_{}}{20} \\ 20-\frac{271_{}}{20} \\ (20\cdot20-1\cdot271)/(20) \\ (400-271)/(20) \\ (129)/(20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/okicnkb1bu3dipgzeku6ee1g0vhz211x3o.png)
Let us write the answer in mixed number
![(129)/(20)=6(9)/(20)](https://img.qammunity.org/2023/formulas/mathematics/college/bc968ht5nnb5qjir4mq5ewn5lbzsvi4r0h.png)
Finally, convert the fractional part to seconds by multiplying the fractional part by 3
![6(9)/(20)=6(27)/(60)](https://img.qammunity.org/2023/formulas/mathematics/college/qeqp08zsmpa7i128u875xt9jjzuhfn3s6b.png)
This means that there are 6 minutes and 27 seconds are left for problem 3.
![6(27)/(60)](https://img.qammunity.org/2023/formulas/mathematics/college/p06znscjfv69eu2njegtobsibaczxjpi8o.png)