Answer:
1. 1
3. 729/8
Step-by-step explanation:
Part 1
In the sequence: 729, -243, 81,...
![\begin{gathered} (81)/(-243)=-(1)/(3) \\ -(243)/(729)=-(1)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6w6tpq9jev2cl10mn45cjou2rh8vvnbxvo.png)
• The first term, a = 729
,
• The common ratio, r = -1/3
The nth term of a geometric progression is obtained by the formula below:
![a_n=a_1r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/3vairmyfpr17lk1iiy49tgudwjvjyhpikm.png)
Therefore, the rule for the nth term will be:
![a_n=729(-(1)/(3))^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/wd75x9q9byg43ukeoq2ylg9cgflsndyf3o.png)
We then find a7, the seventh term.
![\begin{gathered} a_7=729(-(1)/(3))^(7-1) \\ =729(-(1)/(3))^6 \\ =729*(1)/(729) \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hasuac2ots3v63cohjglfxh47dwv3b3lsi.png)
The seventh term is 1.
Part 3
In the sequence: 8, 12, 18,...
![\begin{gathered} (12)/(8)=1.5 \\ (18)/(12)=1.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1dxd31gyckt7hu2xymo9mxbsvxl92kk81n.png)
• The first term, a = 8
,
• The common ratio, r = 1.5
The nth term of a geometric progression is obtained by the formula below:
![a_n=a_1r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/3vairmyfpr17lk1iiy49tgudwjvjyhpikm.png)
Therefore, the rule for the nth term will be:
![a_n=8(1.5)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/h7c9t42fuev6yq7zlxjbi1kw96erjcmqc4.png)
We then find a7, the seventh term.
![\begin{gathered} a_7=8(1.5)^(7-1) \\ =8(1.5)^6 \\ =(729)/(8) \\ =91(1)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/js2d1sy6sxligdg20jwcy1n3zfvpaw3qqs.png)
The seventh term is 729/8.