Given:
The tuition at a college is increasing by 5.6% each year
Let the tuition = a
So, the increases every year will form a geometric sequence
The first term = a
And the common ratio = r = 1.056
And the general term will be:
![a_n=a\cdot r^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/kdh1nfg44o7n3hhei5p88rtr7w69u81pyn.png)
We will find the value of (n) at the term (2a)
![\begin{gathered} 2a=a\cdot1.056^(n-1)\rightarrow(/ a) \\ 2=1.056^(n-1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x4gtx815oq473xkb84ne8pb9enom7tg2tk.png)
Taking the natural logarithm to both sides
![\begin{gathered} \ln 2=(n-1)\cdot\ln 1.056 \\ n-1=(\ln 2)/(\ln 1.056)\approx12.72 \\ n=12.72+1=13.72 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jig6993xpkrnnyqk0lb9z3aks6h6tio7f7.png)
so, the tuition will be double after 13 years