We know that the line goes through the points (2,k), (k,32) and the origin (0,0)
To obtain the equation of a line we only need 2 points, we can use (2,k) and (0,0) to do that:
![\begin{gathered} y-0=((k-0))/((2-0))(x-0) \\ \Rightarrow y=(k)/(2)x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z2y2hkt5nj83mdfvr4idu1sw4e805ygodc.png)
Then, we can use the third point to obtain the value of k.
![\begin{gathered} (k,32)\rightarrow y=32\Rightarrow x=k \\ \Rightarrow32=(k)/(2)\cdot k \\ \Rightarrow32\cdot2=k^2 \\ \Rightarrow k^2=64 \\ \Rightarrow k=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xh3ph8r4ull0rncc7glwixm2jbu4r249qr.png)
Therefore, the answer to the question is k=8, option c