We will need to find each angles
Using cosine formula
![x^2=y^2+w^2-2wy\cos X](https://img.qammunity.org/2023/formulas/mathematics/college/f5e9awz2r7xiegfkrevg2fu3hg7m8zaxdu.png)
From the question given,
x=11 y=5 w=7
Substitute the values into the formula and solve for angle X
![11^2=5^2+7^2-2(7)(5)\cos X](https://img.qammunity.org/2023/formulas/mathematics/college/ls3jri6ot086oz29kth18komwnj9u2mtev.png)
![121=25\text{ + 49-70cosX}](https://img.qammunity.org/2023/formulas/mathematics/college/k3weatj75f76kj6u2klnyhr5603s09bsk6.png)
![121=74-70\cos X](https://img.qammunity.org/2023/formulas/mathematics/college/58uuj9gl1ghutmcidwraoj2xfhyitv9gz7.png)
subtract 74 from both-side
121-74 = -70cosX
47 =- 70 cos X
Divide both-side by -70
(-0.6714) = cos X
Take the cos⁻' of both-side
cos⁻' (-0.6714) = X
X= 132.175
Next
Using the cosine formula
y² = x² + w² - 2xw cosY
5² =11² + 7² - 2(11)(7) - cos Y
25 = 121 + 49 - 154 cos Y
25 = 170 -