Answer:
The standard form of a quadratic equation is given below as
![y=ax^2+bx+c](https://img.qammunity.org/2023/formulas/mathematics/high-school/g7mvpjunjwe6qob7ddy7l4f0glbtdi9gci.png)
The y-intercept given is
![(0,-1.4)](https://img.qammunity.org/2023/formulas/mathematics/college/5riecq28stuj9y23sysw72el4eaowogv2g.png)
This indicates that at x=0, y= 1.4
Substitute x=0, y= 1.4 in the quadratic expression below
![\begin{gathered} y=ax^2+bx+c \\ a(0)^2+b(0)+c=-1.4 \\ c=1.4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n5npynw4lppfjxkfn07ex7ygq62z8zemdk.png)
The x-intercept is given below as
![(0.905,0)](https://img.qammunity.org/2023/formulas/mathematics/college/jaimgsqyylyixtlbjm13ioyou5ygc0joj5.png)
This means at x=0.905,y=0
Substitute x=0.905,y=0 in the quadratic expression above
![\begin{gathered} y=ax^2+bx+c \\ 0=a(0.905)^2+b(0.905)+c \\ \text{recall that:} \\ c=-1.4 \\ 0=a(0.905)^2+b(0.905)+c \\ 0=a(0.905)^2+b(0.905)-1.4 \\ 0.819a+0.905b=1.4----(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/185g766pccg6xqgep5kjxn1206b2ad6cud.png)
Since the third points below pass through the parabola, the third point is given below as
![(3.07,0.314)](https://img.qammunity.org/2023/formulas/mathematics/college/cvjn2w89y839ap4urjdxui3038wmze7rhx.png)
Substitute when x=3.07,y=0.314 in the quadratic expression above
![\begin{gathered} y=ax^2+bx+c \\ a(3.07)^2+b(3.07)-1.4=0.314 \\ 9.425a+3.07b=0.314+1.4 \\ 9.425a+3.07b=1.714-----(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2dx6g9oaqig15kjfox7as0rqydr7avnnto.png)
Combine equations (1) and (2) and solve simultaneously
![\begin{gathered} 0.819a+0.905b=1.4 \\ 9.425a+3.07b=1.714 \\ \text{mulipy equation (1) by 9.425 and equation 2 by 0.819} \\ 7.719a+8.53b=13.195 \\ 7.719a+2.514b=1.404 \\ \text{substracting both equations, we will have} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pdho4eq0g5qe82ykhy0ut64m0ybwr8hiyd.png)
![\begin{gathered} 7.719a-7.719a+8.53b-2.514b=13.195-1.404 \\ (6.016b)/(6.016)=(11.791)/(6.016) \\ b=1.96 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/675970t9v6vd10s1v1zpbbbbetnvhcmusl.png)
Substitute the value of b=1.96 in the equation (1)
![\begin{gathered} 0.819a+0.905b=1.4 \\ 0.819a+0.905(1.96)=1.4 \\ 0.819a+1.7738=1.4 \\ 0.819a=1.4-1.7738 \\ (0.819a)/(0.819)=(-0.3738)/(0.819) \\ a=-0.46 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/v1c98xcgijdyntcze9pjvdmew5x3eb31xo.png)
Hence,
The general equation will be
![y=-0.46x^2+1.96x-1.4](https://img.qammunity.org/2023/formulas/mathematics/college/oyc8yows05bnw0f9l0xiz5zjm8ib0v3sx9.png)