Given:
First brand = 9% vinegar
Second brand = 14% vinegar
Total = 320 milliliters
Find-:
How much of each brand should she use?
Explanation-:
The total amount is 320 milliliter
Let 9% vinegar amount = x
14% vinegar amount = y
Total is 320 milliliter
then,
![\begin{gathered} x+y=320 \\ \\ y=320-x......................(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m8p7kizdaabcr6ibqzo8e2h9ilda7s6tt1.png)
9% first and 14% second and make 13% of total
![\begin{gathered} 9\%x+14\%y=13\%\text{ of }320 \\ \\ (9)/(100)x+(14)/(100)y=(13)/(100)*320 \\ \\ 0.09x+0.14y=0.13*320 \\ \\ 0.09x+0.14y=41.6........................(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y0ncwdbl0c7fy76s1qts1fkcqxqtfqev4h.png)
Put the value of "y" in eq(2) form eq(1) then,
![\begin{gathered} 0.09x+0.14y=41.6 \\ \\ 0.09x+0.17(320-x)=41.6 \\ \\ 0.09x+(0.17*320)-0.17x=41.6 \\ \\ 0.09x-0.17x+54.4=41.6 \\ \\ 0.09x-0.17x=41.6-54.4 \\ \\ -0.08x=-12.8 \\ \\ x=(-12.8)/(-0.08) \\ \\ x=160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qph4e6fcdddqb4nq3qx1uwaqso0ge904zh.png)
The value of "x" is 160.
The value of "y" is:
![\begin{gathered} x+y=320 \\ \\ y=320-x \\ \\ y=320-160 \\ \\ y=160 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5rkkh2nva2md4azpbujntw73oh69uciz8f.png)
The value of "y" is 160.