Step-by-step explanation
Step 1
as the lines that make the river are parallel the triangles are similar, so we can make a proportion
let
![\text{ratio = }\frac{\text{ opposite side}}{\text{adyancent side}}](https://img.qammunity.org/2023/formulas/mathematics/college/vp9inby72ywx5t1e0naw7k4vdb0h56j8ca.png)
hence
![\begin{gathered} \text{ratio}_1=(16.2)/(33) \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t1k6ry2x6c9nf6b20vjbxdsr2cfgow2p6k.png)
and let x represents the width of the river
![ratio_2=_{}(x)/(58)](https://img.qammunity.org/2023/formulas/mathematics/college/3sxekh0vy4xk2asegi1nf9j9a2wncjh83a.png)
therefore, the proportion is
![\begin{gathered} \text{ ratio}_1=ratio_2 \\ (16.2)/(33)=(x)/(58) \\ \text{Multiply both sides by 58 to isolate x} \\ (16.2)/(33)\cdot58=(x)/(58)\cdot58 \\ 28.47=x \\ x=28.47 \\ \text{rounded to the nearest meter} \\ x=28\text{ meters} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/reecfqzjvejq4cfdknj1qxr851ldf15fxi.png)
so, the answer is
28 meters
I hope this helps you
,