Let 'x' represent the cost of the garden table.
Let 'y' represent the cost of the bench.
Therefore, from the first statemenet
![x+y=573\ldots\ldots.1](https://img.qammunity.org/2023/formulas/mathematics/high-school/il9k7veiq40ewhs5mmwigjxwwvo4mw3zny.png)
From the second statement,
![x=y-77\ldots\ldots2](https://img.qammunity.org/2023/formulas/mathematics/high-school/g3zmhzhxvth7mcv0ltmpb0tfaikdocpeoy.png)
Substitute x = y - 77 into equation 1
![\begin{gathered} x+y=573 \\ y-77+y=573 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xt3ntkyvoiddoajjcfp48q4tnibjrt15de.png)
Collect like terms
![\begin{gathered} y+y=573+77 \\ 2y=650 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yys5wth6d1kwq4sx8ch15jizajeau6se2q.png)
Divide both sides by 2
![\begin{gathered} (2y)/(2)=(650)/(2) \\ y=325 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kgv2o0fullkmah20yb9dkzh5l7z6yvb987.png)
Therefore, the cost of the bench is 325.