![x=-2\pm i\sqrt[]{6}](https://img.qammunity.org/2023/formulas/mathematics/college/gtulkqzksnmjfk44i28c9h1qnkjchfcino.png)
1) Let's solve this quadratic equation by the Quadratic Formula Method.
2) So, we can write out the following:
![\begin{gathered} x^2+4x+10=0 \\ x=\frac{-b\pm\sqrt[]{\Delta}}{2a} \\ x_{}=(-4\pm√(4^2-4\cdot\:1\cdot\:10))/(2\cdot\:1) \\ x_1=(-4+2√(6)i)/(2)\Rightarrow\quad x_1=-2+√(6)i \\ x_2=(-4-2√(6)i)/(2)\Rightarrow\quad x_2=-2-\sqrt[]{6}i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vhdei394kuk9d5bxoservo5p5cq1j5a4dv.png)
Note that as the Discriminant is negative, then this quadratic yields two complex roots. Adjusting to the way the options are presented, we can state the answer is:
![\quad x=-2\pm i\sqrt[]{6}](https://img.qammunity.org/2023/formulas/mathematics/college/c4dx1im2v2hfalo4a0346cbi5174897zvm.png)