534,908 views
5 votes
5 votes
Solve the following equation for x: 8x^2 + 6x = -5​

User Abu Shumon
by
2.5k points

1 Answer

17 votes
17 votes

Answer:


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=-(3)/(8)+i(√(31))/(8),\:x=-(3)/(8)-i(√(31))/(8)

Explanation:


8x^2+6x=-5


\mathrm{Add\:}5\mathrm{\:to\:both\:sides}


8x^2+6x+5=-5+5


8x^2+6x+5=0


\underline{\mathrm{Solve\: further\:using\:the\:quadratic\: formula}}


x_(1,\:2)=(-6\pm √(6^2-4\cdot \:8\cdot \:5))/(2\cdot \:8)


x_(1,\:2)=(-6\pm \:2√(31)i)/(2\cdot \:8)


\mathrm{Separate\:the\:solutions}


x_1=(-6+2√(31)i)/(2\cdot \:8),\:x_2=(-6-2√(31)i)/(2\cdot \:8)


\bold{(-6+2√(31)i)/(2\cdot \:8)=-(3)/(8)+(√(31))/(8)i}


\bold{(-6-2√(31)i)/(2\cdot \:8)=-(3)/(8)-(√(31))/(8)i}

More information

Quadratic equation formula:


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)

User Dstibbe
by
3.0k points