we want to solve the following equation
![\text{ -2.5}\cdot(4x-4)=\text{ -6}](https://img.qammunity.org/2023/formulas/mathematics/college/cloq1t5bjl5f5iuvzy9oj4l8otgl6617ud.png)
the idea to solve the equation is to apply mathematical operations to the equation, so we can isolate the x on one side of the equation.
We will start by factoring a 4 inside the parenthesis. So we get
![\text{ -2.5}\cdot4\cdot(x\text{ -1)= -6}](https://img.qammunity.org/2023/formulas/mathematics/college/46id9ovh3shp9gxsw4h2yhalu644oe1vvr.png)
which is equivalent to the equation
![\text{ -10}\cdot(x\text{ -1)= -6}](https://img.qammunity.org/2023/formulas/mathematics/college/fmfcbtve2za0e0u09z1cyy9m3zls6n7i1i.png)
now, we divide both sides by -10. So we get
![(x\text{ -}1)=\text{ }\frac{\text{ -6}}{\text{ -10}}=(6)/(10)=(3)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/rw8z2uwuunl4rnobbal9etokrdq1sycfqb.png)
now we will add 1 on both sides, so we get
![x=1+(3)/(5)=(5)/(5)+(3)/(5)=(8)/(5)](https://img.qammunity.org/2023/formulas/mathematics/college/hm7pjqltrmwcnym4pv6owjz1exx9e0yrsl.png)
so the value of x is 8/5 or x=1.6