16.9k views
2 votes
A population of mold decays at a rate of 25 mold spores per day. Assume that the initial population of mold spores is 1640 spores.Step 2 of 2 : How many days will it take for the population to be less than 350 mold spores? Round your answer up to the nearest whole number.

A population of mold decays at a rate of 25 mold spores per day. Assume that the initial-example-1
User Efi
by
3.7k points

1 Answer

6 votes

The rate of decay of the mold population is 25 mold spores per day or 25%.

The initial mold population is assumed to be 1640 spores.

The formula for exponential decay is;


f(x)=a(1-r)^x

Where the variables are;


\begin{gathered} r=0.25 \\ a=1640 \\ x=Number\text{ of days} \end{gathered}

We can substitute into the formula and we'll have;


f(x)=1640(1-0.25)^x

For the population of spores to be 350 mold spores, the equation would now become;


\begin{gathered} 350=1640(1-0.25)^x \\ 350=1640(0.75)^x \\ \text{Divide both sides by 1640;} \\ (350)/(1640)=(1640(0.75)^x)/(1640) \\ 0.2134=0.75^x \end{gathered}

At this point we shall apply the exponent rule;


\begin{gathered} f(x)=g(x) \\ \text{Then,} \\ \ln (f(x))\ln (g(x)) \end{gathered}

Hence;


\ln (0.2134)=\ln (0.75^x)^{}

Next we apply the log rule;


\log _bx^a=a\log _bx

We now re-write our equation as;


\begin{gathered} \ln (0.2134)=x\ln (0.75) \\ x=(\ln (0.2134))/(\ln (0.75)) \end{gathered}

By use of a calculator, the value of x now becomes;


\begin{gathered} x=5.36907 \\ \text{Rounded to the nearest whole number,} \\ x=5 \end{gathered}

That means it would take approximately 5 days for the mold population to reach 350 spores.

Hence, for the population to be less than 350 would take a

User Imanol Luengo
by
3.5k points