Answer:
![E(x)=\mu=7.72](https://img.qammunity.org/2023/formulas/mathematics/college/27s9z6utxut6mrs8rdzt9kcn0bh7khc8bk.png)
Explanations:
The formula for finding the expected value of a probability distribution is expressed as:
![E(x)=\mu=\sum xP\mleft(x\mright)](https://img.qammunity.org/2023/formulas/mathematics/college/n218to3bz7uvodtthcembk3bbkzdxbt6v2.png)
Substituting the values in the table into the formula will give:
![\begin{gathered} E(x)=2(0.07)+4(0.19)+6(0.25)+8(0.11)+10(0.07)+12(0.30)+14(0.01) \\ E(x)=0.14+0.76+1.5+0.88+0.7+3.6+0.14 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nliy9p2tu647pjqpl99nxoz1v8u4tp2nks.png)
Taking the resulting sum of to get the expected value;
![E(x)=\mu=7.72](https://img.qammunity.org/2023/formulas/mathematics/college/27s9z6utxut6mrs8rdzt9kcn0bh7khc8bk.png)
Hence the expected value of the probability distribution of the discrete random variable X is 7.72