Let the initial amount be $1 and use the rule of the compounded interest
![A=P(1+(r)/(n))^(nt)](https://img.qammunity.org/2023/formulas/mathematics/high-school/39foo2gerf9tf1ffk32zwshrn339mz02kv.png)
P = 1
r = 3.3% = 3.3/100 = 0.03
n = 365
t = 1
![\begin{gathered} A=1(1+(0.033)/(365))^(365*1) \\ A=1.033548998 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mdqmk7f2diq5wgxty76nbcv6w7sft5ml4x.png)
Now find the annual rate using the percent of the increasing rule
![P=(N-O)/(N)*100](https://img.qammunity.org/2023/formulas/mathematics/college/z0umikmh49w3ygf8fv938wtyh25h53typ4.png)
N is the new amount
O is the old amount
![\begin{gathered} \text{Perc}\mathrm{}=(1.033548998-1)/(1)*100 \\ \text{Perc}\mathrm{}=3.355 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ok25x5zk0n0b5oj9ry38poq6dd4svpxkk.png)
The annual percent is 3.355%