In account A:
1.
Mr. Malone is putting $200 first, then he deposits $15 each month
Since y is the total amount of money after x months, then
![y=15x+200\rightarrow(1)](https://img.qammunity.org/2023/formulas/mathematics/college/ajt45ssa1hlusowlot6l74pfhk6e4k2zlp.png)
In account B:
2.
Mr. Malone is putting $300 first, then he deposits $10 each month
Since y is the total amount of money after x months, then
![y=10x+300\rightarrow(2)](https://img.qammunity.org/2023/formulas/mathematics/college/suf32ilc2htcd2v258eqr10bwcn6efnrlt.png)
3.
We will subtract equation (1) from equation (2) to eliminate y
![\begin{gathered} y-y=(10x-20x)+(300-200) \\ 0=-10x+100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7ko3f08pskoggje1ae1kq4vzsafd6dodm1.png)
Add 10x to each side
![\begin{gathered} 0+10x=-10x+10x+100 \\ 10x=100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rbleigmusfrg6wes6a7bzgj8d2fqfb5h2s.png)
Divide both sides by 10
![\begin{gathered} (10x)/(10)=(100)/(10) \\ x=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/63rk2iq7hkh5ivglynftquob9k5xfew9al.png)
Substitute x by 10 in equation (1) OR (2) to find y
![\begin{gathered} y=20(10)+200 \\ y=200+200 \\ y=400 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3ugqsqx7dgryv3enu5z3uqubywggclzg54.png)
The solution of the equations is x = 10, y = 400
4.
After 10 months the accounts will have the same balance
5.
The balance will be $400