![\begin{gathered} 5)2.498 \\ 6)2.6 \\ 7)3 \\ 8)2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/an0oeuvwqi3urqwepnpocaohv9dbbihbzh.png)
5) In this one, let's take the logarithm on both sides:
![\begin{gathered} 10^x=315 \\ \log_(10)10^x=\log_(10)315 \\ x=2.498 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ym56jptnfziejjzverhp3mh0083dha7xfy.png)
6) Let's begin this exponential equation by simplifying it whenever possible:
![\begin{gathered} 2*10^x=800 \\ (2*10^x)/(2)=(800)/(2) \\ 10^x=400 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xl0b13v6p7enz7925naf4bw889vvvembvv.png)
Note that we cannot rewrite 400 as a power of base 10, so let's resort to the logarithm:
![\begin{gathered} \log_(10)10^x=\log_(10)400 \\ x=2.60 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3hzkcfqjmximfygc1evk6zzr5q13ggp6ov.png)
Note that according to the property of the logarithm, we can tell that log_10(10)^x is equal to x
7)
![\begin{gathered} 10^(\left(1.2x\right))=4000 \\ \log_(10)10^(1.2x)=\log_(10)4000 \\ 1.2x=3.60 \\ (1.2x)/(1.2)=(3.6)/(1.2) \\ x=3.00 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w83k0yfw7314adfuhh8vupqvkynbu20zcd.png)
Note that in this case, we had to take the logarithms on both sides right away.
8)
![\begin{gathered} 7*10^(0.5x)=70 \\ (7*10^(0.5x))/(7)=(70)/(7) \\ 10^(0.5x)=10 \\ 0.5x=1 \\ (0.5x)/(0.5)=(1)/(0.5) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pz3x6jp4u88zb2xtkuitbncrpxisoadn6o.png)
Note that in this case, after dividing both sides by 7 we ended up with two powers of base 10.