Answer:
340 feet
Explanation:
The braking distance d, in meters, of a vehicle traveling at a velocity v, in meters per second, is given by the formula:
![d=(v^2)/(2\mu g)](https://img.qammunity.org/2023/formulas/mathematics/high-school/nh8tzrprzhsnhkj0yb49xfa8mdbxdxfe90.png)
Part B
Given:
• v =68 mi/hr
,
• μ = 0.45
,
• g = 9.8 m/s²
First, convert the velocity, v from miles per hour to meters per second.
• 1 miles = 1609.34 meters
,
• 1 hour = 3600 seconds
![68(miles)/(hour)=68*(1609.34)/(3600)(meters)/(seconds)=30.40\text{ meters/seconds}](https://img.qammunity.org/2023/formulas/mathematics/college/8oxzzcnuas23a8uxgdyvmxvdvdndodzry1.png)
Substitute v=30.40 m/s into the formula.
![\begin{gathered} d=(30.40^2)/(2*0.45*9.8) \\ d=104.78\text{ meters} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wmp6ijpi304te555t655gcoi6plwy5tdh4.png)
Finally, convert the result to feet.
![\begin{gathered} 1\text{ meter}\approx3.28\text{ feet} \\ \implies104.78\text{ meters}=104.78*3.28\text{ feet} \\ =343.6784\text{ feet} \\ \approx340\text{ feet \lparen rounded to the nearest ten\rparen} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r4wrkch572wz0db5kakz26phufd5y9d5aj.png)
The braking distance is about 340 feet.