158k views
2 votes
Can you explain to me how to solve this please

Can you explain to me how to solve this please-example-1
User Fluxsaas
by
8.6k points

1 Answer

4 votes

To solve the exercise you can use the following properties of exponents and radicals


a^{(m)/(n)}=\sqrt[n]{a^m}
a^ma^n=a^(m+n)
(a^m)/(a^n)=a^(m-n)

So, you have


\begin{gathered} \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=\frac{7^{(1)/(3)}\cdot7^{(1)/(2)}}{\sqrt[6]{7^5}} \\ \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=\frac{7^{(1)/(3)+(1)/(2)}}{7^{(5)/(6)}} \\ \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=\frac{7^{(5)/(6)}}{7^{(5)/(6)}} \\ \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=7^{(5)/(6)-(5)/(6)} \\ \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=7^0 \end{gathered}

By definition


\begin{gathered} a^0=1 \\ \text{Where a }\\e0 \end{gathered}

So


\begin{gathered} \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=7^0 \\ \frac{\sqrt[3]{7}\sqrt[]{7}}{\sqrt[6]{7^5}}=1 \end{gathered}

Therefore, the correct answer is b. 1.

User Ekeko
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.