176k views
4 votes
Evaluate the following indefinite integral using the appropriate techniques of integration.

Evaluate the following indefinite integral using the appropriate techniques of integration-example-1
User Jlh
by
3.4k points

1 Answer

2 votes

Given:


\int x^3e^(-x)dx

Required:

To integrate given equation

Step-by-step explanation:


\int x^3e^{-xdx\text{ }}\text{ let u=x}^(-3),v=e^(-x),\text{ then v =-e}^(-x)
\begin{gathered} =x^3(-e^(-x))-\int(-e^(-x)).bx\text{ -}\int(-e^(-x)).bdx \\ \\ \\ =x^3(-e^(-x))-(e^(-x).3x^2-\int e^(-x).bx\text{ dx} \end{gathered}
\begin{gathered} =-x^3(-e^(-x))-(3e^(-x)x^2-((-e^(-x)).bdx \\ \\ =-x^3.e^(-x)-3e^(-x)x^2+(-6xe^(-x)-\int-6e^(-x)dx)) \end{gathered}
=-x^3e^(-x)-3x^2e^(-x)-6xe^(-x)+\int6e^(-x)dx
=-x^3e^(-x)-3x^2e^(-x)-6xe^(-x)-6e^(-x)+c\text{ C}\in R

Required answer:

Above explanation

User Shebeer
by
3.0k points