Answer:
The volume of the right triangle pyramid is;
![V=14.43\text{ }m^3](https://img.qammunity.org/2023/formulas/mathematics/college/rv1qhl8ceo2vr1axzspy7sv12kmw4xc25e.png)
Step-by-step explanation:
Given the right triangle pyramid whose base is 5 meters on each side and whose altitude 4 meters.
![\begin{gathered} H=4 \\ a=b=c=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dmsniwfxzx5vrvil2h9lvzrssuqfndurwi.png)
Recall that the area of a pyramid can be calculated using the formula;
![V=(1)/(3)AH](https://img.qammunity.org/2023/formulas/mathematics/college/61ejjs46vtbu16mqtme10mhwaejoucg8fy.png)
where;
A is the area of the base of the pyramid and H the altitute of the pyramid.
The area of the triangular base is;
![A=(1)/(2)bh](https://img.qammunity.org/2023/formulas/mathematics/high-school/9sstqki54txhbml6j22rcfvxwdjny9xtib.png)
the height of the base is;
![\begin{gathered} h=\sqrt[]{5^2-2.5^2} \\ h=\sqrt[]{18.75} \\ h=4.33\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zc3iv2uogk92b4ju6czppqbb3irof8lh6q.png)
substituting to calculate the Volume of the pyramid;
![\begin{gathered} V=(1)/(3)AH \\ V=(1)/(3)((1)/(2)bh)H \\ V=(1)/(6)\text{bhH} \\ b=5\text{ m} \\ h=4.33\text{ m} \\ H=\text{ 4 m} \\ so; \\ V=(1)/(6)*5*4.33*4 \\ V=14.43\text{ }m^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zw4vbq9ac8m7zl53n96i65dkslnj30z3by.png)
Therefore, the volume of the right triangle pyramid is;
![V=14.43\text{ }m^3](https://img.qammunity.org/2023/formulas/mathematics/college/rv1qhl8ceo2vr1axzspy7sv12kmw4xc25e.png)