Given: A exponential function-
![y=a\cdot b^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/6has3k4sb3pm3ew4419r8bw5p19fprxq7e.png)
passing through the points (1,6) and (2,9)
Required: To find out the value of a and b.
Explanation: Since the given exponential function is passing through (1,6)
![6=a\cdot b^1\text{ ..........\lparen1\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/36ql0ki73qoi78e62a8q6e0nx0495tknxu.png)
Now the function is also passing through (2,9)
![9=a\cdot b^2\text{ ......\lparen2\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/ihbsvqihy68osm4ok574vy81ejtvoh5plj.png)
Dividing eq 2 and eq 1 we get,
![(9)/(6)=(a\cdot b^2)/(ab^)](https://img.qammunity.org/2023/formulas/mathematics/college/jwwkc6xz3rft963p77pcm18380uzpkkj4j.png)
![(3)/(2)=b](https://img.qammunity.org/2023/formulas/mathematics/college/37kr34yx7vd0vg5dtvxrdt2a7k19s401iq.png)
Putting this value of b in eq 1,
![6=a*(3)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/4s41kvwzuj1363q9p729ljroufbkhervt5.png)
This gives,
![a=4](https://img.qammunity.org/2023/formulas/mathematics/high-school/qfu4ujfyjy4aurtg1krr0cujqj0neldnhg.png)
Final answer: The value of a=4 and b=1.5